3.2979 \(\int (d x)^m \sqrt{a+b \sqrt{c x^3}} \, dx\)

Optimal. Leaf size=84 \[ \frac{x (d x)^m \sqrt{a+b \sqrt{c x^3}} \, _2F_1\left (-\frac{1}{2},\frac{2 (m+1)}{3};\frac{1}{3} (2 m+5);-\frac{b \sqrt{c x^3}}{a}\right )}{(m+1) \sqrt{\frac{b \sqrt{c x^3}}{a}+1}} \]

[Out]

(x*(d*x)^m*Sqrt[a + b*Sqrt[c*x^3]]*Hypergeometric2F1[-1/2, (2*(1 + m))/3, (5 + 2*m)/3, -((b*Sqrt[c*x^3])/a)])/
((1 + m)*Sqrt[1 + (b*Sqrt[c*x^3])/a])

________________________________________________________________________________________

Rubi [A]  time = 0.0702241, antiderivative size = 84, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {369, 343, 341, 365, 364} \[ \frac{x (d x)^m \sqrt{a+b \sqrt{c x^3}} \, _2F_1\left (-\frac{1}{2},\frac{2 (m+1)}{3};\frac{1}{3} (2 m+5);-\frac{b \sqrt{c x^3}}{a}\right )}{(m+1) \sqrt{\frac{b \sqrt{c x^3}}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Int[(d*x)^m*Sqrt[a + b*Sqrt[c*x^3]],x]

[Out]

(x*(d*x)^m*Sqrt[a + b*Sqrt[c*x^3]]*Hypergeometric2F1[-1/2, (2*(1 + m))/3, (5 + 2*m)/3, -((b*Sqrt[c*x^3])/a)])/
((1 + m)*Sqrt[1 + (b*Sqrt[c*x^3])/a])

Rule 369

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*((c_.)*(x_)^(q_))^(n_))^(p_.), x_Symbol] :> With[{k = Denominator[n]}, Su
bst[Int[(d*x)^m*(a + b*c^n*x^(n*q))^p, x], x^(1/k), (c*x^q)^(1/k)/(c^(1/k)*(x^(1/k))^(q - 1))]] /; FreeQ[{a, b
, c, d, m, p, q}, x] && FractionQ[n]

Rule 343

Int[((c_)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracPart[m])/x^FracP
art[m], Int[x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] && FractionQ[n]

Rule 341

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[n]}, Dist[k, Subst[Int[x^(k*(
m + 1) - 1)*(a + b*x^(k*n))^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, m, p}, x] && FractionQ[n]

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int (d x)^m \sqrt{a+b \sqrt{c x^3}} \, dx &=\operatorname{Subst}\left (\int (d x)^m \sqrt{a+b \sqrt{c} x^{3/2}} \, dx,\sqrt{x},\frac{\sqrt{c x^3}}{\sqrt{c} x}\right )\\ &=\operatorname{Subst}\left (\left (x^{-m} (d x)^m\right ) \int x^m \sqrt{a+b \sqrt{c} x^{3/2}} \, dx,\sqrt{x},\frac{\sqrt{c x^3}}{\sqrt{c} x}\right )\\ &=\operatorname{Subst}\left (\left (2 x^{-m} (d x)^m\right ) \operatorname{Subst}\left (\int x^{-1+2 (1+m)} \sqrt{a+b \sqrt{c} x^3} \, dx,x,\sqrt{x}\right ),\sqrt{x},\frac{\sqrt{c x^3}}{\sqrt{c} x}\right )\\ &=\operatorname{Subst}\left (\frac{\left (2 x^{-m} (d x)^m \sqrt{a+b \sqrt{c} x^{3/2}}\right ) \operatorname{Subst}\left (\int x^{-1+2 (1+m)} \sqrt{1+\frac{b \sqrt{c} x^3}{a}} \, dx,x,\sqrt{x}\right )}{\sqrt{1+\frac{b \sqrt{c} x^{3/2}}{a}}},\sqrt{x},\frac{\sqrt{c x^3}}{\sqrt{c} x}\right )\\ &=\frac{x (d x)^m \sqrt{a+b \sqrt{c x^3}} \, _2F_1\left (-\frac{1}{2},\frac{2 (1+m)}{3};\frac{1}{3} (5+2 m);-\frac{b \sqrt{c x^3}}{a}\right )}{(1+m) \sqrt{1+\frac{b \sqrt{c x^3}}{a}}}\\ \end{align*}

Mathematica [A]  time = 0.0664947, size = 84, normalized size = 1. \[ \frac{x (d x)^m \sqrt{a+b \sqrt{c x^3}} \, _2F_1\left (-\frac{1}{2},\frac{2 (m+1)}{3};\frac{1}{3} (2 m+5);-\frac{b \sqrt{c x^3}}{a}\right )}{(m+1) \sqrt{\frac{b \sqrt{c x^3}}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*x)^m*Sqrt[a + b*Sqrt[c*x^3]],x]

[Out]

(x*(d*x)^m*Sqrt[a + b*Sqrt[c*x^3]]*Hypergeometric2F1[-1/2, (2*(1 + m))/3, (5 + 2*m)/3, -((b*Sqrt[c*x^3])/a)])/
((1 + m)*Sqrt[1 + (b*Sqrt[c*x^3])/a])

________________________________________________________________________________________

Maple [F]  time = 0.05, size = 0, normalized size = 0. \begin{align*} \int \left ( dx \right ) ^{m}\sqrt{a+b\sqrt{c{x}^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^m*(a+b*(c*x^3)^(1/2))^(1/2),x)

[Out]

int((d*x)^m*(a+b*(c*x^3)^(1/2))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\sqrt{c x^{3}} b + a} \left (d x\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(a+b*(c*x^3)^(1/2))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(sqrt(c*x^3)*b + a)*(d*x)^m, x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(a+b*(c*x^3)^(1/2))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d x\right )^{m} \sqrt{a + b \sqrt{c x^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**m*(a+b*(c*x**3)**(1/2))**(1/2),x)

[Out]

Integral((d*x)**m*sqrt(a + b*sqrt(c*x**3)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\sqrt{c x^{3}} b + a} \left (d x\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(a+b*(c*x^3)^(1/2))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(sqrt(c*x^3)*b + a)*(d*x)^m, x)